
Annotation Inference for Safety Certification of Automatically Generated Code
(Extended Abstract)

Ewen Denney
USRA/RIACS, NASA Ames

edenney@email.arc.nasa.gov

Bernd Fischer
ECS, University of Southampton

B.Fischer@ecs.soton.ac.uk

1 Introduction

Automated code generation is an enabling technology for
model-based software development and promises many
benefits, including higher quality and reduced turn-around
times. However, the key to realizing these benefits is gener-
ator correctness: nothing is gained from replacing manual
coding errors with automatic coding errors.

Since the direct verification of generators is unfeasi-
ble with existing techniques, “correct-by-construction” ap-
proaches have been explored. However, these remain dif-
ficult to implement and to scale up, and have not seen
widespread use. Currently, generators are validated primar-
ily by testing [8], though this cannot guarantee correctness
and quickly becomes excessive. Here we follow an alterna-
tive approach based on the observation that the correctness
of the generator is irrelevant if instead the correctness of the
generated programs is shown individually. Similar to proof
carrying code [7], we focus on the Hoare-style certification
of specific safety properties. This simplifies our task but still
leaves the problem of constructing the appropriate logical
annotations (i.e., pre-/postconditions and loop invariants),
due to their central role in Hoare-style techniques.

In thecertifiable program generationapproach, the code
generator itself is extended in such a way that it generates
the necessary annotations together with the code [3]. This
has two major disadvantages. First, the developers need to
modify the code generator in order to integrate the anno-
tation generation but sources are often not accessible, in
particular for commercial generators. Second, it is diffi-
cult to implement and to maintain because the annotations
are cross-cutting concerns, both on the object-level (i.e., the
generated program) and the meta-level (i.e., the generator).

Here we describe an alternative technique that uses a
generic post-generation annotation inference algorithm to
circumvent these problems. We exploit both the highly id-
iomatic structure of automatically generated code and the
restriction to specific safety properties. Since generated
code only constitutes a limited subset of all possible pro-
grams, the new “eureka” insights required in general remain
rare in our case. Since safety properties are simpler than

A[1,1]:= a1,1;
. . .
A[1, m]:= a1,m;
A[2,1]:= a2,1;
. . .
A[n, m]:= an,m;

for i:= 1 to n do
for j:= 1 to mdo

B[i,j]:= b;

for i:= 1 to n do
for j:= 1 to mdo

if i=j then
C[i,j]:= c

else
C[i,j]:= c′;

Figure 1. Idiomatic matrix initializations

full functional correctness, the required annotations are also
simpler and more regular. We can thus use patterns to de-
scribe all code constructs that require annotations and tem-
plates to describe the required annotations. We use tech-
niques similar to aspect-oriented programming to add the
annotations to the generated code: the patterns correspond
to (static) point-cut descriptors, while the introduced anno-
tations correspond to advice.

The annotation inference algorithm can run completely
separately from the generator and is generic with respect to
the safety property, although we use initialization safety as
running example here. It has been implemented and applied
to certify initialization safety for code generated by AUTO-
BAYES [5] and AUTOFILTER [10].

2 Background

Idiomatic Code. Automated code generators derive low-
level code from declarative specifications. Approaches
vary, but for our purposes the details do not matter, and
we build on a template-based approach. What does matter,
however, is the fact that most generators produceidiomatic
code(i.e., code that exhibits a regular structure beyond the
syntax of the programming language) by combining a finite
number of building blocks. For example, AUTOBAYES and
AUTOFILTER only use three templates to initialize a matrix,
resulting in either straight-line code or one of two doubly-
nested loop versions (cf. Fig. 1).

The idioms are essential to our approach because they
(rather than the templates) determine the interface between
the code generator and the inference algorithm. They can
be recognized from a given code base alone, even without

1

knowing the templates that produced the code. This allows
us to apply our technique to black-box generators as well.
Safety Certification. The purpose of safety certification is
to demonstrate that a program does not violate certain con-
ditions during its execution. Asafety propertyis an exact
characterization of these conditions. Asafety policyis a set
of Hoare rules designed to show that safe programs satisfy
the safety property of interest. In our framework the rules
are formalized using the usual Hoare triples extended with
a “shadow” environment which records safety information
related to the corresponding program variables, and asafety
predicatethat is added to the computed verification condi-
tions (VCs) [2].

We use initialization safety as example but other safe-
ty properties can also be used with our algorithm, includ-
ing absence of out-of-bounds array accesses and nil-pointer
dereferences [2, 7]. Initialization safety ensures that each
variable or individual array element has been explicitly as-
signed a value before it is used. The shadow variablex̄ con-
tains the valueINIT after the variablex has been assigned
a value; shadow arrays capture the status of the individual
elements. Only rules for statements assigning a value to a
location affect the shadow environment; the most compli-
cated cases are the loop rules which require explicit invari-
ants. Initialization safety defines an expression to be safe if
the respective shadow variables have the valueINIT , so that,
e.g.,safe(x[i]) simply translates tōı = INIT∧x̄[i] = INIT .
VC Processing and Annotations.A VC generator (VCG)
traverses the annotated code and applies the Hoare rules to
produce VCs, starting with the postconditiontrue. If all
VCs are proven by an automated theorem prover (ATP),
the program is safe wrt. the safety property. However, the
ATP has no access to the program internals; hence, all perti-
nent information must be taken from the annotations which,
in general, must be so detailed that their inference is in-
tractable. For safety certification, however, the Hoare rules
are specialized and the safety predicates are regular and
simple, so that the required annotations are simpler.

3 Inference Algorithm

Our aim is to “get information from definitions to uses”,
i.e., to annotate the program such that the VCG has the
information necessary to show the program safe (wrt. the
given property) as it works its way back through the pro-
gram. The notions of definitions and uses are specific to the
given safety property. For initialization safety, definitions
correspond to the different initialization blocks as shown
in Fig. 1, while uses are statements which read a variable.
For array bounds safety, definitions are the array declara-
tions since the shadow variables get their values from the
declared bounds, while uses are statements which access an
array variable.

Fig. 2(a) shows an example program, similar to code pro-
duced by AUTOFILTER, that initializes two vectorsA and
B and computes the sumss and t of their respective ele-
ments. AUTOFILTER’s target language is a simple impera-
tive language with basic control constructs (i.e.,if andfor)
and numeric scalars and arrays as the only datatypes. It also
supports domain-specific operations like matrix assignment
and multiplication that are not used in the example.
Top-level Algorithm Structure. The inference algorithm
first scans the code for relevant variables. For each vari-
able, it builds an abstracted control flow graph where irrel-
evant parts of the program are collapsed into single nodes.
It then follows all paths backwards from the variable’s use
nodes until it encounters either a cycle or a definition node
for the variable. Paths that do not end in a definition are dis-
carded and the remaining paths are traversed node by node.
Annotations are added to all intermediate nodes that other-
wise constitute barriers to the information flow before the
definitions themselves are annotated.
Patterns and Pattern Matching. We use patterns to cap-
ture the idiomatic code structures and pattern matching to
find the corresponding code locations. Our pattern lan-
guage is a tree-based regular expression language similar
to XPath. It supports matching of tree literals, wildcards
(), optional (?), list (*) and non-empty list (+) pat-
terns, as well as alternation (||) and concatenation (;).
P1 ∈ P2 matches all terms that matchP2 and have at last
one subterm that matchesP1 and similarly forP1 ∈/P2. We
use meta-variables in patterns to introduce context depen-
dency: an uninstantiated meta-variable matches any term
but it then becomes instantiated and subsequently match-
es only other instances of the matched term. For ex-
ample, the pattern([]:=)+ matches the entire state-
ment listA[1]:=1;A[2]:=2;B[1]:=1 while the pat-
tern (x[]:=)+ matches only the two assignments toA
but not the final assignment toB, due to the instantiation of
x with A. Meta-variables are instantiated eagerly but instan-
tiations are undone if the enclosing pattern fails later on.
Hot Variable Identification. Proving a program safe re-
quires annotations at the points where the VCG needs infor-
mation about the contents of the essential shadow variables.
The algorithm thus first passes through the program to de-
termine which variable uses are essential or “hot”, i.e., for
which there are barriers (mainly loops) to the information
flow along the paths to all definitions. Since the system con-
structs annotations only for these hot variables, they must be
approximated conservatively; we focus on the hot uses ofA
andB in lines 5.2 and 5.3.
Abstracted Control Flow Graphs. The algorithm uses ab-
stracted control flow graphs (CFGs), in which code frag-
ments matching specific patterns are collapsed into indi-
vidual nodes. Since the patterns can depend on the vari-
ables, separate abstracted CFGs must be constructed for

2

1.1
1.2
1.3

2.1

2.n

3.1

3.2

4.1
4.2

5.1

5.2
5.3

constN:= n;
var i,s,t;
var A[1:N],B[1:N];

A[1]:= a1;
· · ·
A[n]:= an;

for i:=1 to Ndo

B[i]:= b;

s:=0;
t:=0;

for i:=1 to Ndo

s:=s+A[i];
t:=t+B[i];

(a)

constN:= n;
var i,s,t;
var A[1:N],B[1:N];

A[1]:= a1;
· · ·
A[n]:= an;

def(B[1:N]);

s:=0;
t:=0;

for i:=1 to Ndo

t:=t+A[i];
use(B);

(b)

constN:= n;
var i,s,t;
var A[1:N],B[1:N];

A[1]:= a1;
· · ·
A[n]:= an;

for i:=1 to N do
inv ∀j∈{1: i−1}·B̄[j]=INIT

B[i]:= b;
post∀j∈{1:N}·B̄[j]=INIT

s:=0;
t:=0;

for i:=1 to N do
inv ∀j∈{1:N}·B̄[j]=INIT

s:=s+A[i];
t:=t+B[i];

(c)

block(A);

def(A[1: N]);

barrier(A);

block(A);

for i:=1 to Ndo

use(A);
block(A);

(d)

constN:= n;
var i,s,t;
var A[1:N],B[1:N];

A[1]:= a1;
· · ·
A[n]:= an;
post∀j∈{1:n}·Ā[j]=INIT

for i:=1 to N do
inv ∀j∈{1:n}·Ā[j]=INIT

∧ ∀j∈{1: i−1}·B̄[j]=INIT

B[i]:= b;
post∀j∈{1:n}·Ā[j]=INIT

∧ ∀j∈{1:N}·B̄[j]=INIT

s:=0;
t:=0;

for i:=1 to N do
inv ∀j∈{1:n}·Ā[j]=INIT

∧ ∀j∈{1:N}·B̄[j]=INIT

s:=s+A[i];
t:=t+B[i];

(e)

Figure 2. (a) Original program (b) Abstraction for B (c) Annotations for B (d) Abstraction for A (using
block- and barrier-patterns) (e) Annotations inferred for A and B

each hot variable. CFG construction first matches the pro-
gram against the different patterns and, in the case of a
match, constructs a single node of the class corresponding
to the pattern, rather than recursively descending into the
statements. The algorithm constructsuse- and def-nodes
and usesbarrier- andblock-nodes as optimizations to rep-
resent code that can be regarded as opaque (to different de-
grees) because it contains no definition for the given vari-
able. Both are treated as atomic nodes during path search,
which drastically reduces the number of paths that need be
explored.barrier-nodes represent code that requires anno-
tations, mainly loops. They must be re-expanded and tra-
versed during the annotation phase of the algorithm.block-
nodes are irrelevant to the hot variable because they neither
require annotations (i.e., contain no barriers) nor contribute
to annotations (i.e., contain no definition). They remain
atomic during the annotation phase, i.e., are not entered on
path traversal. Blocks are usually loop-free sequences of
assignments and conditionals.
Annotation of Nodes and Paths.ForB, the CFG construc-
tion identifies thefor -loop in lines 3.1-3.2 as the definition
for the entire arrayB and abstracts it into the definition node
def(B[1:N]), cf. (Fig. 2(b). The path search then starts
at the hot use in line 5.3 (abstracted intouse(B)) and goes
straight back up to thefor -loop at line 5.1, where it splits.
One branch passes through the bottom of the loop body
but this immediately leads to a cycle and is therefore dis-
carded. The other branch continues through lines 4.1 and

4.2 to terminate at the definition node at line 3.1. Since
all branches have been exhausted, there is only one path
along which annotations need to be added. The annotation
process starts with the use and proceeds towards the defini-
tion terminating the path. Every node needs to be inspect-
ed, but in this case only thefor -loop at line 5.1 requires an
invariant. Since the traversal must take control flow into
account, the current annotation is computed from the WPC
of the previous annotation for the current node. This can
be considerably more complicated than for the simple ex-
ample given, but in general the form of all annotations is
fully determined by the safety property, and in the case of
a definition, its known syntactic structure as described by
the pattern. The annotation knowledge is represented by
annotation schemas, which are the core of the whole sys-
tem. They take a match (identifying the pattern and the lo-
cation), and use meta-programming to construct and insert
the annotations. Here, the definition is a loop, so it needs
a loop invariant and a postcondition. Since the safety prop-
erty is initialization safety, both invariant and postcondition
need to formalize that the shadow variableB̄ correspond-
ing to the current array variableB records the valueINIT for
the entries already initialized. Fig. 2(c) shows the partially
annotated program after this pass.

The next pass adds the annotations forA. It is initial-
ized using a different idiom—a sequence of assignments,
cf. Fig. 2(d), lines 2.1–2.n—which is again collapsed into a
def-node. The program is collapsed further by the introduc-

3

tion of barrier- andblock-nodes. Thebarrier-nodes must
be re-expanded during the path traversal phase because they
require annotations (cf. line 3.1) while theblock-nodes re-
main opaque. Except for this special handling, the algo-
rithm proceeds as before, and Fig. 2(e) shows the resulting
fully annotated program.

Note that the definitions and the paths are untrusted; their
correctness is established by the annotations, which are
themselves untrusted and ultimately checked by the ATP.

4 Experiences

We have implemented the generic inference algorithm and
used an instantiation to certify initialization safety for code
generated by AUTOBAYES and AUTOFILTER. This re-
quired only a small “declarative content”, i.e., only pattern
definitions but no changes to the core algorithm itself.
AutoFilter. For AUTOFILTER, the definitions are given by
two of the matrix initialization idioms in Fig. 1, along with
the scalar and matrix assignment operations:= and::= .

defAF(x) ::= x:= || x::=
|| (x[,]:=)+
|| for i := to do for j := to do

if thenx[i, j]:= elsex[i, j]:=

The pattern is parametrized over the hot variablex and uses
“free” meta-variablesi and j that are bound to the actual
index variables of the matched loop. Barriers are defined as
for -loops without any occurrence of the hot variable. Loops
with the hot variable are then simply treated by the normal
CFG-routines, i.e., not collapsed. Finally, blocks are condi-
tionals whose branches are irrelevant because they contain
no occurrence of a barrier or the hot variable.

barrierAF(x) ::= x ∈/ (for := to do)

blockAF(x) ::= if (x ∈/) then irr (x) elseirr (x)
|| for := to do irr (x)

Hereirr (x) = (x||barrierAF(x))∈/ is an auxiliary pattern
blocking all occurrences of the hot variable or a barrier. We
omit the easy pattern for uses.
AutoBayes. AUTOBAYES requires additionalfor -loop pat-
terns but does not need the::=-pattern since it does not gen-
erate direct matrix operations. It has two additional lan-
guage constructs,abort, which appears in the definition pat-
tern, andwhile-loops, which can form additional barriers.
Blocks and uses are the same as for AUTOFILTER.
Results. For AUTOFILTER, annotation inference proves to
be very similar to the previous certifiable program genera-
tion approach. The inferred annotations are slightly larger
(by 15–25%) than the generated ones but, due to simplifica-
tions, they produce fewer VCs, and all VCs are proven by
the ATP. For AUTOBAYES, annotation generation has not
kept up with ongoing generator development and the orig-
inal annotations are now insufficient to prove the programs

safe. Using annotation inference with the patterns described
above, we can already certify some programs but more code
patterns are required to cover the entire range of programs.

Since it needs to build and traverse the CFGs, the in-
ference approach is slower than the generation approach,
which only needs to expand templates. However, the over-
all proof times are comparable, indicating that the inference
does not introduce new complexity for the ATP.

5 Conclusions

Early work used a combination of logical inference and
heuristics to push an initial annotation forward through the
program [9]; this proved to be computationally expensive
and ineffective. Dynamic [4] and static [6] generate-and-
test methods have also been used but they are much less
goal-oriented than our approach and require refutation of
many invalid annotation candidates.

In our previous certifiable program generation approach,
extensions and modifications to the code generators had
over time led to a situation of “entropic decay” where the
generated annotations had not kept up with the generated
code. The new certification system based on annotation in-
ference is able to automatically certify the same programs
as the original system, as well as some subsequent exten-
sions. However, the re-construction is not yet complete, and
we continue to extend the new system. These extensions
require less effort than before since the patterns and annota-
tion schemas are expressed declaratively and in one place,
in contrast to the previous decentralized architecture where
certification information is distributed throughout the code
generator. Our new approach offers a general framework
for augmenting code generators with a certification compo-
nent, and we have started a project to apply it to MathWorks
Real-Time Workshop [1].

References
[1] http://www.mathworks.com/products/rtw .
[2] E. Denney and B. Fischer. Correctness of source-level safety poli-

cies.FM 2003, LNCS 2805, 894–913.
[3] E. Denney and B. Fischer. Certifiable program generation.GPCE

2005, LNCS 3676, 17–28.
[4] M. Ernst et al. Dynamically discovering likely program invariants to

support program evolution.IEEE TSE, 27(2):1–25, 2001.
[5] B. Fischer and J. Schumann. AutoBayes: A system for generating

data analysis programs from statistical models.JFP, 13(3):483–508,
2003.

[6] C. Flanagan and R. Leino. Houdini, an annotation assistant for
ESC/Java.FM 2001, LNCS 2021, 500–517.

[7] G. Necula. Proof-carrying code.POPL-24, 106–119, 1997.
[8] I. Stürmer et al. Overview of existing safeguarding techniques for

automatically generated code.SIGSOFT SEN, 30(4):1–6, 2005.
[9] B. Wegbreit. The synthesis of loop predicates.CACM, 17(2):102–

112, 1974.
[10] J. Whittle and J. Schumann. Automating the implementation of

Kalman filter algorithms.ACM TMS, 30(4):434–453, 2004.

4

